

SmartOS: An OS Architecture for Sustainable Embedded Systems

Tobias Scheipel tobias.scheipel@tugraz.at

Leandro Batista Ribeiro

lbatistaribeiro@tugraz.at

Tim Sagaster

tim.sagaster@student.tugraz.at

Marcel Baunach

baunach@tugraz.at

Institute of Technical Informatics Embedded Automotive Systems Group Graz University of Technology

² Outline

- Introduction and Motivation
- OS Architecture and Basic Concepts
- Extended Concepts and Special Features
 - MCU/OS Co-Design
 - Compositional Software and Automatic Integration
 - Formal Methods for Verification and Portability
- Conclusion

Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

ЦΤІ Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

Partial Software Updates DI

ШΤІ Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

- Partial Software Updates DI
- Support for Hardware Modification D2

UTI Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

- Partial Software Updates DI
- Support for Hardware Modification D2
- D3 Automatic Integration

ШΤІ Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

- Partial Software Updates DI
- Support for Hardware Modification D2
- D3 Automatic Integration
- Hard Correctness Guarantees for Composition **D4**

ШΤІ Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

- Partial Software Updates DI
- Support for Hardware Modification D2
- D3 Automatic Integration
- Hard Correctness Guarantees for Composition D4
- D5 **Efficient and Automatic Portability**

UTI Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

- Partial Software Updates DI
- Support for Hardware Modification D2
- D3 Automatic Integration
- Hard Correctness Guarantees for Composition D4
- D5 Efficient and Automatic Portability

Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

- DI Partial Software Updates
- D2 Support for Hardware Modification
- D3 Automatic Integration
- D4 Hard Correctness Guarantees for Composition
- D5 Efficient and Automatic Portability

Possibilities:

PI Support for Partial Reconfiguration of Logic

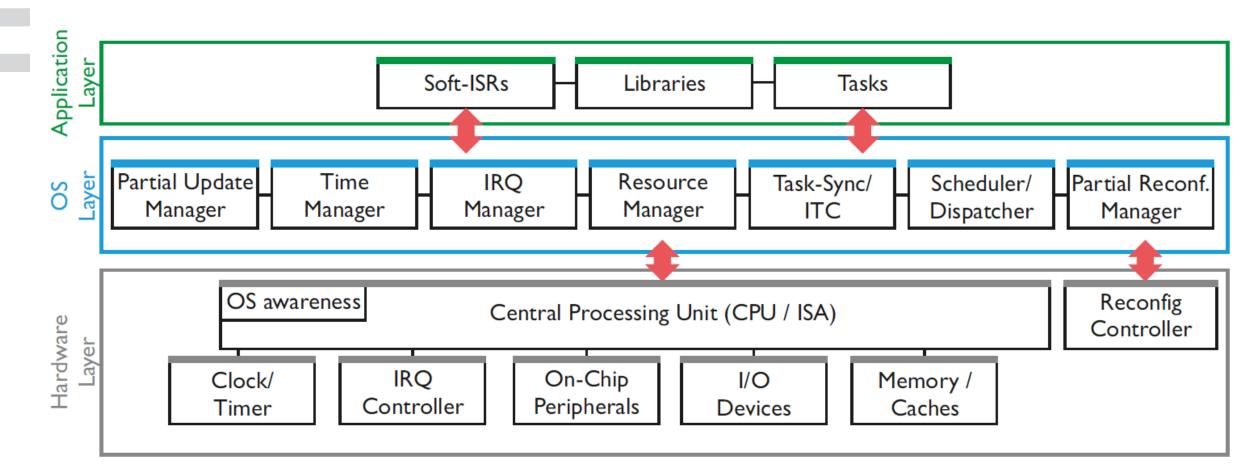
- 2*)*

Introduction and Motivation

Long-Term Maintenance, Dependability, Compositionality

Demands:

3

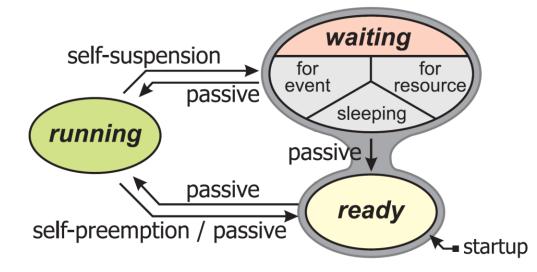

- DI Partial Software Updates
- D2 Support for Hardware Modification
- D3 Automatic Integration
- D4 Hard Correctness Guarantees for Composition
- D5 Efficient and Automatic Portability

Possibilities:

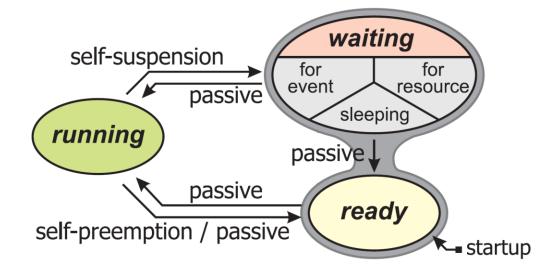
- PI Support for Partial Reconfiguration of Logic
- P2 Use of Formal Methods for Development and Maintenance

OS Architecture and Basic Concepts Layering.

⁵ OS Architecture and Basic Concepts Central Concepts.

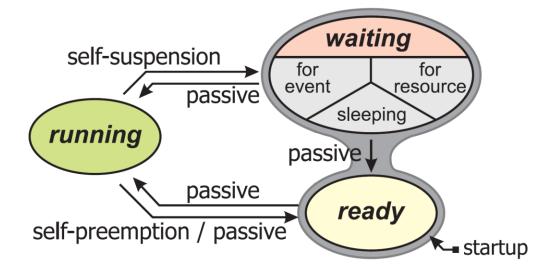

• Internal Timeline

- Internal Timeline
- Tasks



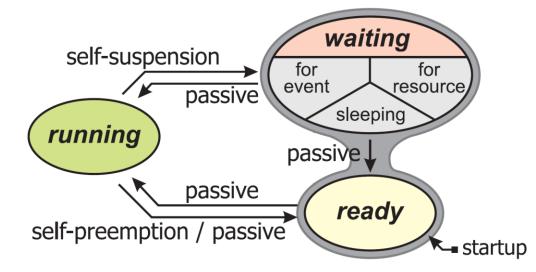
5 OS Architecture and Basic Concepts Central Concepts.

- Internal Timeline
- Tasks
- System Calls



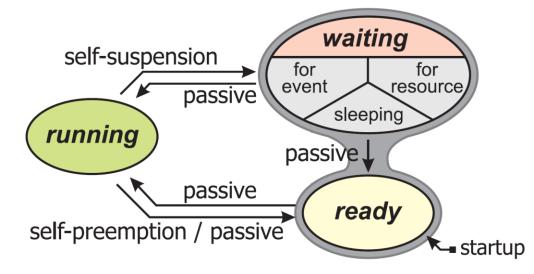
5 OS Architecture and Basic Concepts Central Concepts.

- Internal Timeline
- Tasks
- System Calls
- Events



OS Architecture and Basic Concepts Central Concepts.

- Internal Timeline
- Tasks
- System Calls
- Events
- Resources


1	OS_TASKENTRY (task1) {
2	[]
3	while (1) {
4	<pre>waitEvent (ev1);</pre>
5	
6	<pre>getResource (res1);</pre>
7	[]
8	<pre>releaseResource (res1);</pre>
9	
10	setEvent (ev2);
11	}
12	}

ШΤЦ **OS** Architecture and Basic Concepts Central Concepts.

- Internal Timeline
- Tasks
- System Calls
- Events
- Resources
- Interrupts

1	OS_TASKENTRY (task1) {
2	[]
3	while (1) {
4	<pre>waitEvent (ev1);</pre>
5	
6	<pre>getResource (res1);</pre>
7	[]
8	<pre>releaseResource (res1);</pre>
9	
10	<pre>setEvent (ev2);</pre>
11	}
12	}

Extended Concepts and Special Features An overview.

Partial Software Updates D1

Support for Hardware Modification D2

Automatic Integration D3

Hard Correctness Guarantees for Composition D4

Efficient and Automatic Portability D5

• Tackling Demands DI-D5

Extended Concepts and Special Features An overview.

Partial Software Updates DI

Support for Hardware Modification D2

Automatic Integration D3

Hard Correctness Guarantees for Composition D4

Efficient and Automatic Portability D5

- Tackling Demands D1-D5
- Three overarching Topics:
 - OS-specific Hardware Support and Reconfiguration
 - Compositional Software Design and Partial Updates
 - Formal Methods for Verification and Portability

Extended Concepts and Special Features An overview.

Partial Software Updates DI

Support for Hardware Modification D2

Automatic Integration D3

Hard Correctness Guarantees for Composition D4

Efficient and Automatic Portability D5

- Tackling Demands D1-D5
- Three overarching Topics:
 - OS-specific Hardware Support and Reconfiguration
 - Compositional Software Design and Partial Updates
 - Formal Methods for Verification and Portability
- Extended concepts facilitate/improve addressing demands!

B Extended Concepts and Special Features MCU/OS Co-Design.

Partial Reconfiguration

of the host computing platform at runtime


```
10 [...]

11 addi t1, zero, 6

12 cinsi t0, t1, 2 ; unknown

instr.

13 [...]
```


ШΤЦ **Extended Concepts and Special Features** MCU/OS Co-Design.

Partial Reconfiguration

of the host computing platform at runtime

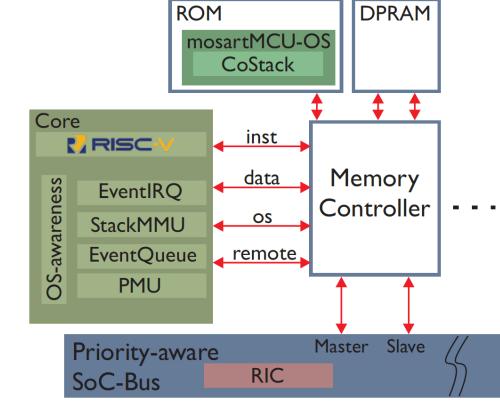
• Hardware Security Features

within the host microcontroller unit

```
[...]
10
     addi t1, zero, 6
11
     cinsi t0, t1, 2 ; unknown
12
         instr.
     [...]
13
```


Extended Concepts and Special Features MCU/OS Co-Design.

Partial Reconfiguration


of the host computing platform at runtime

Hardware Security Features

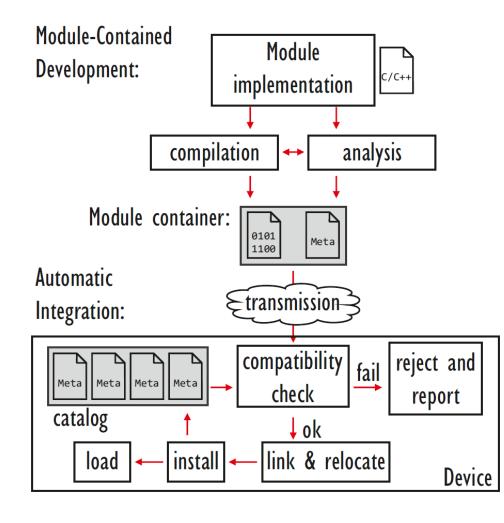
within the host microcontroller unit

• OS-aware Logic

of the host processor

11	[] addi cinsi			;	unknown
13	in []	str.		ŗ	

ШΤІ



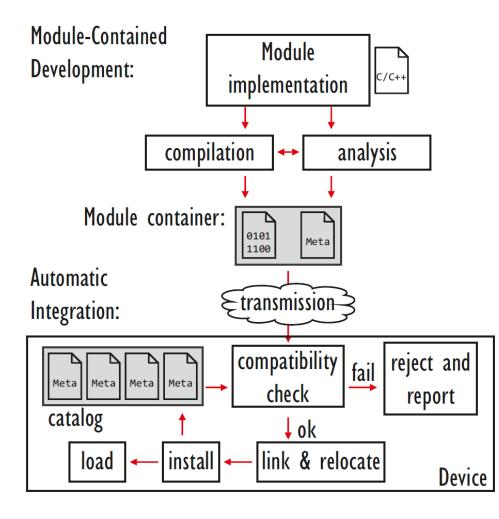
ШΤΙ **Extended Concepts and Special Features**

Compositional Software and Automatic Integration.

Partial Updates

of the running software in a modular way while preserving code dependencies

Extended Concepts and Special Features

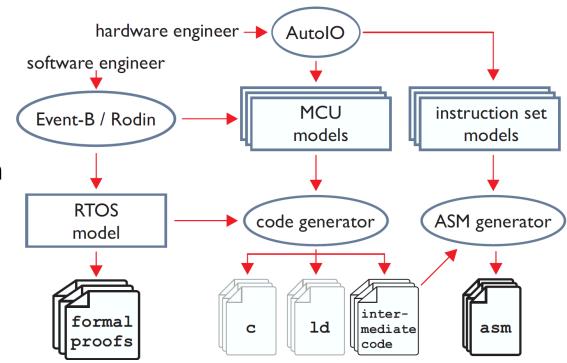

Compositional Software and Automatic Integration.

Partial Updates

of the running software in a modular way while preserving code dependencies

Compatibility Checks

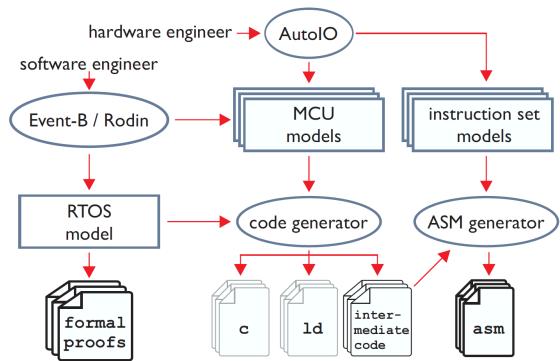
of functional and non-functional requirements before an update is applied


ШΤЦ

ШΤЦ **Extended Concepts and Special Features**

Formal Methods for Verification and Portability.

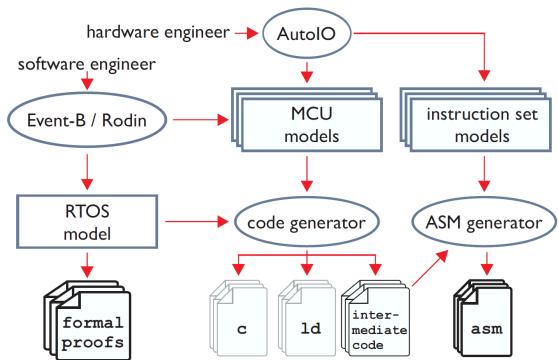
 Creation of Independent Models of application software, operating system and processor logic

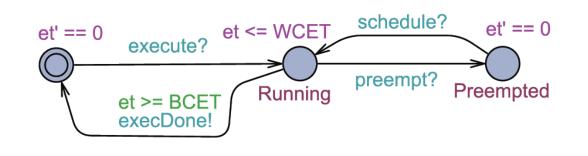


ШΤЦ **Extended Concepts and Special Features**

Formal Methods for Verification and Portability.

- Creation of Independent Models of application software, operating system and processor logic
- Generation •
 - of hardware-specific code for different target architectures




Extended Concepts and Special Features

Formal Methods for Verification and Portability.

- Creation of Independent Models

 of application software, operating system
 and processor logic
- Generation
 - of hardware-specific code for different target architectures
- Verification
 - of different aspects of (non-)functional properties

ШΤІ

• SmartOS consists of a microkernel with basic concepts

12 Conclusion

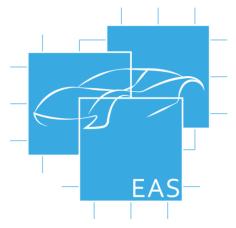
- SmartOS consists of a microkernel with basic concepts
- Extended features include

- SmartOS consists of a microkernel with basic concepts
- Extended features include
 - a tightly coupled design of the OS and its underlying MCU,

- SmartOS consists of a microkernel with basic concepts
- Extended features include
 - a tightly coupled design of the OS and its underlying MCU,
 - support for compositional software, and

- SmartOS consists of a microkernel with basic concepts
- Extended features include
 - a tightly coupled design of the OS and its underlying MCU,
 - support for compositional software, and
 - the use of formal methods to support software development and maintenance.

- SmartOS consists of a microkernel with basic concepts
- Extended features include
 - a tightly coupled design of the OS and its underlying MCU,
 - support for compositional software, and
 - the use of formal methods to support software development and maintenance.
- Raise awareness for the necessity of the shown concepts



- SmartOS consists of a microkernel with basic concepts
- Extended features include
 - a tightly coupled design of the OS and its underlying MCU,
 - support for compositional software, and
 - the use of formal methods to support software development and maintenance.
- Raise awareness for the necessity of the shown concepts
- Providing an OS architecture that inherently supports them by design

Thank you for your attention

https://iti.tugraz.at/research/research-areas/embedded-automotive-systems/