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Susceptible to attacks
• Code-Reuse-Attacks

• Re-use existent piece of code
• I.e. flow deviated to gain root access

• Return-Oriented programming

Mitigation technique
• Address space layout randomization (ASLR)
• Integrity check of control flow (CFI)
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INTRODUCTION

CFI basic idea:
• build a Control Flow Graph (CFG) 

of the program
• CFG defines the legal execution

void foo() { ... }   

void main() { 
... 
obj->method = foo; 
obj->method();
...

} 

mainmain

foofoo

ldr r0, method 
blr r0

ret

ARM introduced hw supports:
• Branch Targets Identification (BTI)

• Forward branch protection
• Pointer Authentication Code (PAC)

• Backward branch protection
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BACKGROUND

Pointers in AArch64:
• Address represented on [0:VA_SIZE]
• Typically VA_SIZE = 48
• Empty [VA_SIZE:54] and [56:63]

8



BACKGROUND

AArch64 Pointer Authentication Codes (PAC):
• Hardware-based CFI
• Leverages empty space on 64-bit virtual addresses
• Append a Message Authentication Code (MAC)
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BACKGROUND

PointerPointer

HHContextContext

KeyKey

PAC | PointerPAC | Pointer

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation defined

PAC:
0x0000AABBCCDDEEFF

0x1234AABBCCDDEEFF
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Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation defined

PAC | PointerPAC | Pointer

H|=H|=ContextContext

KeyKey

PointerPointer

1 | Pointer1 | Pointer

AUTH:

0x1234AABBCCDDEEFF

0x8000AABBCCDDEEFF

0x0000AABBCCDDEEFF

0b10000000

0x1236 != 0x1234

0x1234 = 0x1234

0x1236AABBCCDDEEFF
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CONTRIBUTIONS

Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6

• Available only on ARM ^v8.3
• Currently no COTS SoC available
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Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6

• Available only on ARM ^v8.3
• Currently no COTS SoC available

Leverage on PL & 
virtualization to counteract 
these issues!
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CONTRIBUTIONS

Check it out @ clare.santannapisa.it15

CLARE

CLARE is a hypervisor-centric software 
stack. It simplifies the development 
cyber-physical systems offering:
• heterogeneous computing platforms 

support
• ready-to-use environment for deploying 

mixed-criticality applications. 

https://clare.santannapisa.it/


CONTRIBUTIONS

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC
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HYPERVISOR CAN DETECT 
ATTACKS

20



CONTRIBUTIONS

Logic structure of PAC-PL HW accelerator
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• Device registers are 
splitted in two sets, 
privileged and non-
privileged.

• The device can send an 
interrupt to the CPU when 
authentication fails.
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EVALUATION

Overhead (%) for 
TACLeBench collection:
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• In some benchmark the overhead 
was under timer resolution (µs)

• 21 out of 25 of them have 
overhead below 10% and the 
average overhead introduced is 
about 16.65%

• Each function protected by our 
plugin increases its footprint by 48 
bytes.

https://github.com/tacle/tacle-bench


EVALUATION

“Analytic” and measured 
upper bounds:
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• Hardware accelerator behavior was 
measured with a System ILA

• PS – PL write/read propagation 
derived with a customer 
hardware device probing 1000000 
requests (w/ hot-caches on bare-
metal firmware)



CONCLUSION & FUTURE DIRECTIONS

Future directions
• Implement and test-out the same approach 

with a pure software emulation
• Make the protection model “smarter”, 

analyzing the code and produce a 
specialized variant

• Tune up (at compile time) the protection 
degree based on the cost/vulnerability 
degree 

Issues
• Dumb (all-or-nothing) protection model
• The cost is heavy for recursive or call-

intensive programs

Accepted @ RTAS (2022) - Milan (TBA)
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THANK YOU. QUESTIONS?

Gabriele Serra
- gabriele.serra@santannapisa.it
- gabrieleserra.ml

mailto:gabriele.serra@santannapisa.i
https://gabrieleserra.ml/
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