
Enabling Control-Flow Integrity
with Pointer Authentication in FPGA SoC Platforms

Gabriele Serra*, Pietro Fara*, Giorgiomaria Cicero*
Francesco Restuccia†, Alessandro Biondi*

*Scuola Superiore Sant’Anna, Pisa
†University of California, San Diego

FGBS Spring 2022

INTRODUCTION

2

Embedded systems
• OSes are written in C/C++
• Exposed to public access (especially in

automotive and railway environments)

INTRODUCTION

Embedded systems
• OSes are written in C/C++
• Exposed to public access (especially in

automotive and railway environments)

Susceptible to attacks
• Code-Reuse-Attacks

• Re-use existent piece of code
• I.e. flow deviated to gain root access

• Return-Oriented programming

OS Service

Lib C

Attacked
program1

2

3

3

INTRODUCTION

Embedded systems
• OSes are written in C/C++
• Exposed to public access (especially in

automotive and railway environments)

Susceptible to attacks
• Code-Reuse-Attacks

• Re-use existent piece of code
• I.e. flow deviated to gain root access

• Return-Oriented programming

Mitigation technique
• Address space layout randomization (ASLR)
• Integrity check of control flow (CFI)

OS Service

Lib C

Attacked
program1

2

3

4

INTRODUCTION

CFI basic idea:
• build a Control Flow Graph (CFG)

of the program
• CFG defines the legal execution

5

INTRODUCTION

CFI basic idea:
• build a Control Flow Graph (CFG)

of the program
• CFG defines the legal execution

void foo() { ... }

void main() {
...
obj->method = foo;
obj->method();
...

}

mainmain

foofoo

ldr r0, method
blr r0

ret6

INTRODUCTION

CFI basic idea:
• build a Control Flow Graph (CFG)

of the program
• CFG defines the legal execution

void foo() { ... }

void main() {
...
obj->method = foo;
obj->method();
...

}

mainmain

foofoo

ldr r0, method
blr r0

ret

ARM introduced hw supports:
• Branch Targets Identification (BTI)

• Forward branch protection
• Pointer Authentication Code (PAC)

• Backward branch protection
7

BACKGROUND

Pointers in AArch64:
• Address represented on [0:VA_SIZE]
• Typically VA_SIZE = 48
• Empty [VA_SIZE:54] and [56:63]

8

BACKGROUND

AArch64 Pointer Authentication Codes (PAC):
• Hardware-based CFI
• Leverages empty space on 64-bit virtual addresses
• Append a Message Authentication Code (MAC)

9

BACKGROUND

PointerPointer

HHContextContext

KeyKey

PAC | PointerPAC | Pointer

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation defined

PAC:
0x0000AABBCCDDEEFF

0x1234AABBCCDDEEFF

10

BACKGROUND

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation defined

PAC | PointerPAC | Pointer

H|=H|=ContextContext

KeyKey

PointerPointer

1 | Pointer1 | Pointer

AUTH:

0x1234AABBCCDDEEFF

0x8000AABBCCDDEEFF

0x0000AABBCCDDEEFF

0b10000000

0x1236 != 0x1234

0x1234 = 0x1234

0x1236AABBCCDDEEFF

11

BACKGROUND

Introduced two insns:
• PAC
• AUTH

PAC Creation takes:
• A pointer
• A 64-bit context
• A 128-bit secret key

PAC algorithm ‘H’ can be:
• QARMA
• Implementation defined

12

CONTRIBUTIONS

Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6

• Available only on ARM ^v8.3
• Currently no COTS SoC available

13

CONTRIBUTIONS

Pointer authentication ISSUES

• Weakness against signing gadget
• Weakness against kernel attackers

• Cross EL/Key forgeries
• Key memory leak

• Attack cannot be detected
• Reported to ARM by Cicero et al in 2019
• Will be fixed with FPAC in ARM v8.6

• Available only on ARM ^v8.3
• Currently no COTS SoC available

Leverage on PL &
virtualization to counteract
these issues!

14

CONTRIBUTIONS

Check it out @ clare.santannapisa.it15

CLARE

CLARE is a hypervisor-centric software
stack. It simplifies the development
cyber-physical systems offering:
• heterogeneous computing platforms

support
• ready-to-use environment for deploying

mixed-criticality applications.

https://clare.santannapisa.it/

CONTRIBUTIONS

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisorClare hypervisor

KernelKernel

AppApp AppApp EL0

EL1

EL2

16

CONTRIBUTIONS

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisorClare hypervisor

KernelKernel

AppApp AppApp EL0

EL1

EL2

HYPERVISOR TRAP ACCESS
TO KEY REGISTERS

HYPERVISOR TRAP ACCESS
TO KEY REGISTERS

11

VIRTUALIZE
ACCESS TO KEY

VIRTUALIZE
ACCESS TO KEY

22

17

CONTRIBUTIONS

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisorClare hypervisor

KernelKernel

AppApp AppApp EL0

EL1

EL2

HYPERVISOR TRAP ACCESS
TO KEY REGISTERS

HYPERVISOR TRAP ACCESS
TO KEY REGISTERS

Secure MonitorSecure Monitor EL3

Trusted
OS

Trusted
OS

11

33

22

VIRTUALIZE
ACCESS TO KEY IN

EL1S

VIRTUALIZE
ACCESS TO KEY IN

EL1S

18

CONTRIBUTIONS

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisorClare hypervisor

KernelKernel

AppApp AppApp EL0

EL1

EL2

HYPERVISOR CAN EMULATE
INSTRUCTIONS

HYPERVISOR CAN EMULATE
INSTRUCTIONS

11

19

CONTRIBUTIONS

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

Clare hypervisorClare hypervisor

KernelKernel

AppApp AppApp EL0

EL1

EL2

11

22

HW
Accelerator

HW
Accelerator

HYPERVISOR CAN DETECT
ATTACKS

HYPERVISOR CAN DETECT
ATTACKS

20

CONTRIBUTIONS

Logic structure of PAC-PL HW accelerator

21

• Device registers are
splitted in two sets,
privileged and non-
privileged.

• The device can send an
interrupt to the CPU when
authentication fails.

CONTRIBUTIONS

22

CONTRIBUTIONS

23

EVALUATION

Overhead (%) for
TACLeBench collection:

24

• In some benchmark the overhead
was under timer resolution (µs)

• 21 out of 25 of them have
overhead below 10% and the
average overhead introduced is
about 16.65%

• Each function protected by our
plugin increases its footprint by 48
bytes.

https://github.com/tacle/tacle-bench

EVALUATION

“Analytic” and measured
upper bounds:

25

• Hardware accelerator behavior was
measured with a System ILA

• PS – PL write/read propagation
derived with a customer
hardware device probing 1000000
requests (w/ hot-caches on bare-
metal firmware)

CONCLUSION & FUTURE DIRECTIONS

Future directions
• Implement and test-out the same approach

with a pure software emulation
• Make the protection model “smarter”,

analyzing the code and produce a
specialized variant

• Tune up (at compile time) the protection
degree based on the cost/vulnerability
degree

Issues
• Dumb (all-or-nothing) protection model
• The cost is heavy for recursive or call-

intensive programs

Accepted @ RTAS (2022) - Milan (TBA)
26

THANK YOU. QUESTIONS?

Gabriele Serra
- gabriele.serra@santannapisa.it
- gabrieleserra.ml

mailto:gabriele.serra@santannapisa.i
https://gabrieleserra.ml/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

