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1 MOTIVATION
Operating systems rely on system calls to allow the controlled

communication of isolated processes with the kernel and other pro-

cesses. Every system call includes a processor mode switch from the

unprivileged user mode to the privileged kernel mode. Although

processor mode switches are the essential isolation mechanism to

guarantee the system’s integrity, they induce direct and indirect

performance costs as they invalidate parts of the processor state.

In recent years, high-performance networks and storage hardware

has made the user/kernel transition overhead the bottleneck for

IO-heavy applications. To make matters worse, security vulnerabil-

ities in modern processors (e.g., Meltdown) have prompted kernel

mitigations that further increase the transition overhead.

2 BACKGROUND
Linux’s extended Berkeley Packet Filter (BPF) allow unprivileged

user processes to load safety-checked bytecode into the kernel. The

code is just-in-time compiled and executes at near-native speed.

Invoking BPF programs in the kernel and calling kernel functions

from within BPF is much faster than the respective switch to/from

user context [4].

3 PROBLEM STATEMENT
To isolate the BPF programs from the kernel, the bytecode has to

be statically verified for memory- and type-safety. Initially, only

BPF program paths that could actually execute architecturally were

considered during this static analysis. In response to the Spectre

vulnerabilities disclosed in 2018 [11, 1, 8, 9, 2], kernel developers

have extended the BPF verifier to prevent side-channel leaks from

speculatively-executed BPF program paths. This includes (a) in-

serting instructions to make speculation safe (e.g., index masking),

(b) inserting instructions to prevent speculation (e.g., x86 lfence),
or (c) statically analyzing the behavior on speculative code paths

to ensure they are safe. In summary, these mitigations limit the

performance and expressiveness of unprivileged BPF programs in

order make them safe
1
even in the face of the Spectre attacks.

4 APPROACH
In this talk, we show that there is significant potential to improve

the performance and expressiveness of unprivileged BPF without

sacrificing safety [3, 12, 10, 6]. Regarding performance, this includes

preliminarymicrobenchmarks of the current Linux v6.1 BPF Spectre

mitigations.We show that, depending on the system’s context, there

are multiple feasible policies to be implemented by the verifier. To

solve this, we propose to make the security policy implemented by

1
Not considering programming errors such as [5].

the BPF verifier configurable at runtime, for example, by integrating

instructions to inhibit speculation into the BPF bytecode instruction

set [7].
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