
Flexible and Concise Spectre Mitigations for BPF
FGBS-Spring 2023 Presentation Abstract

Luis Gerhorst

Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)

Ruhr-Universität Bochum (RUB)

gerhorst@cs.fau.de

Henriette Hofmeier

Ruhr-Universität Bochum (RUB)

henriette.hofmeier@rub.de

Timo Hönig

Ruhr-Universität Bochum (RUB)

timo.hoenig@rub.de

1 MOTIVATION
Operating systems rely on system calls to allow the controlled

communication of isolated processes with the kernel and other pro-

cesses. Every system call includes a processor mode switch from the

unprivileged user mode to the privileged kernel mode. Although

processor mode switches are the essential isolation mechanism to

guarantee the system’s integrity, they induce direct and indirect

performance costs as they invalidate parts of the processor state.

In recent years, high-performance networks and storage hardware

has made the user/kernel transition overhead the bottleneck for

IO-heavy applications. To make matters worse, security vulnerabil-

ities in modern processors (e.g., Meltdown) have prompted kernel

mitigations that further increase the transition overhead.

2 BACKGROUND
Linux’s extended Berkeley Packet Filter (BPF) allow unprivileged

user processes to load safety-checked bytecode into the kernel. The

code is just-in-time compiled and executes at near-native speed.

Invoking BPF programs in the kernel and calling kernel functions

from within BPF is much faster than the respective switch to/from

user context [4].

3 PROBLEM STATEMENT
To isolate the BPF programs from the kernel, the bytecode has to

be statically verified for memory- and type-safety. Initially, only

BPF program paths that could actually execute architecturally were

considered during this static analysis. In response to the Spectre

vulnerabilities disclosed in 2018 [11, 1, 8, 9, 2], kernel developers

have extended the BPF verifier to prevent side-channel leaks from

speculatively-executed BPF program paths. This includes (a) in-

serting instructions to make speculation safe (e.g., index masking),

(b) inserting instructions to prevent speculation (e.g., x86 lfence),
or (c) statically analyzing the behavior on speculative code paths

to ensure they are safe. In summary, these mitigations limit the

performance and expressiveness of unprivileged BPF programs in

order make them safe
1
even in the face of the Spectre attacks.

4 APPROACH
In this talk, we show that there is significant potential to improve

the performance and expressiveness of unprivileged BPF without

sacrificing safety [3, 12, 10, 6]. Regarding performance, this includes

preliminarymicrobenchmarks of the current Linux v6.1 BPF Spectre

mitigations.We show that, depending on the system’s context, there

are multiple feasible policies to be implemented by the verifier. To

solve this, we propose to make the security policy implemented by

1
Not considering programming errors such as [5].

the BPF verifier configurable at runtime, for example, by integrating

instructions to inhibit speculation into the BPF bytecode instruction

set [7].

REFERENCES
[1] Atri Bhattacharyya, Alexandra Sandulescu,Matthias Neugschwandtner, Alessan-

dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTh-

erSpectre. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. event-place: London United Kingdom. ACM,

New York, NY, USA, (November 2019). isbn: 978-1-4503-6747-9. doi: 10.1145/

3319535.3363194. http://dx.doi.org/10.1145/3319535.3363194.

[2] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von

Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.

2019. A systematic evaluation of transient execution attacks and defenses.

In 28th USENIX Security Symposium (USENIX Security 19), 249–266. https :
//www.usenix.org/conference/usenixsecurity19/presentation/canella.

[3] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian

Stefan. 2021. SoK: Practical foundations for software Spectre defenses, (May

2021). _eprint: 2105.05801. http://arxiv.org/abs/2105.05801.

[4] Luis Gerhorst, Benedict Herzog, Stefan Reif, Wolfgang Schröder-Preikschat,

and Timo Hönig. 2021. AnyCall: Fast and Flexible System-Call Aggregation. en.

In Proceedings of the 11th Workshop on Programming Languages and Operating
Systems. ACM, Virtual Event Germany, (October 2021), 1–8. isbn: 978-1-4503-

8707-1. doi: 10.1145/3477113.3487267. Retrieved 01/30/2023 from https://dl.

acm.org/doi/10.1145/3477113.3487267.

[5] Luis Gerhorst, Henriette Hofmeier, andDaniel Borkmann. 2023. bpf: Fix pointer-

leak due to insufficient speculative store bypass mitigation. (January 2023).

Retrieved 01/22/2023 from https://git.kernel.org/pub/scm/linux/kernel/git/bpf/

bpf.git/commit/?id=e4f4db47794c9f474b184ee1418f42e6a07412b6.

[6] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés Sánchez.

2020. Spectector: Principled Detection of Speculative Information Flows. In

2020 IEEE Symposium on Security and Privacy (SP). ISSN: 2375-1207. (May 2020),

1–19. doi: 10.1109/SP40000.2020.00011. http://dx.doi.org/10.1109/SP40000.2020.

00011.

[7] Devin Jeanpierre and Chandler Carruth. 2020. Mitigating Spectre v1 Attacks in

C++. (January 2020). https://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2020/p0928r1.pdf.

[8] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin

Kirda, William Robertson, and Anil Kurmus. 2019. Speculator: a tool to analyze

speculative execution attacks and mitigations. In Proceedings of the 35th Annual
Computer Security Applications Conference (ACSAC ’19). event-place: San Juan,

Puerto Rico, USA. Association for Computing Machinery, New York, NY, USA,

(December 2019), 747–761. isbn: 978-1-4503-7628-0. doi: 10 .1145/3359789.

3359837. https://doi.org/10.1145/3359789.3359837.

[9] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest.

2019. Spectre is here to stay: An analysis of side-channels and speculative

execution, (February 2019). _eprint: 1902.05178. http://arxiv.org/abs/1902.

05178.

[10] Marco Patrignani and Marco Guarnieri. 2021. Exorcising spectres with secure

compilers. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. event-place: Virtual Event Republic of Korea.
ACM, New York, NY, USA, (November 2021). doi: 10.1145/3460120.3484534.

http://dx.doi.org/10.1145/3460120.3484534.

[11] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2018. Net-

Spectre: Read arbitrary memory over network, (July 2018). _eprint: 1807.10535.

http://arxiv.org/abs/1807.10535.

[12] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,

Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Auto-

matically eliminating speculative leaks from cryptographic code with blade. en.

Proceedings of the ACM on Programming Languages, 5, POPL, (January 2021),

1–30. Publisher: Association for Computing Machinery (ACM). issn: 2475-1421.

doi: 10.1145/3434330. http://dx.doi.org/10.1145/3434330.

https://orcid.org/0000-0002-3401-430X
https://orcid.org/0000-0002-0828-6862
https://orcid.org/0000-0002-1818-0869
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3319535.3363194
http://dx.doi.org/10.1145/3319535.3363194
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
http://arxiv.org/abs/2105.05801
https://doi.org/10.1145/3477113.3487267
https://dl.acm.org/doi/10.1145/3477113.3487267
https://dl.acm.org/doi/10.1145/3477113.3487267
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=e4f4db47794c9f474b184ee1418f42e6a07412b6
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=e4f4db47794c9f474b184ee1418f42e6a07412b6
https://doi.org/10.1109/SP40000.2020.00011
http://dx.doi.org/10.1109/SP40000.2020.00011
http://dx.doi.org/10.1109/SP40000.2020.00011
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0928r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0928r1.pdf
https://doi.org/10.1145/3359789.3359837
https://doi.org/10.1145/3359789.3359837
https://doi.org/10.1145/3359789.3359837
http://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178
https://doi.org/10.1145/3460120.3484534
http://dx.doi.org/10.1145/3460120.3484534
http://arxiv.org/abs/1807.10535
https://doi.org/10.1145/3434330
http://dx.doi.org/10.1145/3434330

	1 Motivation
	2 Background
	3 Problem Statement
	4 Approach

