
Optimized BFT Replication from Authenticated Logging
Hanish Gogada
University of Stavanger

Christian Berger
Friedrich-Alexander-Universität

Erlangen-Nürnberg

Leander Jehl
University of Stavanger

Hans P. Reiser
Reykjavik University

Hein Meling
University of Stavanger

1 MOTIVATION
Many BFT protocols improve scalability using optimization strate-
gies effective under specific favorable conditions (e.g., [3, 5, 6]).
In adverse scenarios, these optimizations become less effective or
even defunct, necessitating a switch to a more resilient but less
effective protocol like PBFT [2]. It is non-trivial to detect whether
or not the operating conditions are favorable or adversarial. Of-
ten approaches rely on repeated trial-and-error to find a working
system configuration and ignore the actual operating conditions,
such as the latency between replicas and prior misbehavior, thus
resulting in poor performance.

Various systems that consider the operating conditions rely only
on local measurements to select a system configuration (e.g., [4]).
This is problematic because local measurements across the replicas
may be inconsistent, making it challenging to make global config-
uration decisions. In the Byzantine fault model, there is a lack of
transparency and trust if a single replica, e.g., the leader, can make
such decisions based only on its local measurements because it is
impossible to verify that the decision is based on real measurements.

In this presentation, we introduce SmartLog, a logging frame-
work that collects and analyzes metrics for smart configuration
decisions to improve performance despite the presence of faults.
SmartLog presents local measurements in global data structures, to
enable consistent decisions and hold replicas accountable if they
do not perform according to their reported measurements.

2 DESIGN
We advocate for a holistic, measurement-based approach to accu-
rately identify the current operating conditions, promoting aggres-
sive use of efficient protocols and reducing fallback to less efficient
ones. We accomplish this through a shared append-only log of
measurements.

SmartLog is an integrated shared log for recording various met-
rics and computing efficient system configurations from these met-
rics. SmartLog extends a generic replicated state machine with
sensors and monitors to capture and evaluate different metrics (see
Figure 1). Individual replicas instrumented with sensors record
measurements in the log, and corresponding monitors at replicas
collate these measurements into data structures that are used to
and deploy efficient configurations. Furthermore, SmartLog enables
replicas to make consistent configuration decisions based on the
same information. The log also provides transparency, allowing all
replicas to verify decisions and recognize faulty behaviors.

Moreover, some optimization techniques can be costly to (deter-
ministically) evaluate for large configuration sizes. Thus, SmartLog
allows for heuristic optimization techniques, where the resulting
non-deterministic configurations are logged, such that the replicas

Sensor
OptiLog ComponentsClient

Monitors

 Consensus Engine

Operating System

Append-only
Log

Propose
(metrics)

Sensor
App

Propose
(cmds)

Generic RSM
App

Notify(cmds) Notify(metrics)
Commit(cmds)
Commit(metrics)

Client

Reconfigure

Figure 1: SmartLog’s component architecture.

can consistently determine a global ranking of configurations. Also,
SmartLog supports collaborative optimization techniques where
the search space is partitioned and distributed across replicas.

3 IMPLEMENTATION & EVALUATION
To showcase the potential of SmartLog, we apply our implemen-
tation to the BFT protocol Kauri [5] to boost its performance in
heterogenous networks by selecting a fast tree configuration which
is decided based on logged replica latency measurements and in-
dications about faulty replicas. This implementation is based on
an open-source [1] BFT framework based on HotStuff [7]. Our ex-
perimental evaluations reveal that in a geo-replicated deployments,
Kauri enhanced with SmartLog can select tree configurations with
up to 33% lower latency. In particular, the estimate on actual faults
in the system, which can be provided by SmartLog, allows the
implementation to better balance performance and robustness.

REFERENCES
[1] 2024. Relab HotStuff. https://github.com/relab/hotstuff. (2024).
[2] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation (OSDI ’99). USENIX Association, USA, 173–186.

[3] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: A Scalable and Decentralized Trust Infrastructure. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
568–580. https://doi.org/10.1109/DSN.2019.00063

[4] Michael G. Merideth, Florian Oprea, and Michael K. Reiter. 2009. When and How
to Change Quorums on Wide Area Networks. In 2009 28th IEEE International
Symposium on Reliable Distributed Systems. 12–21. https://doi.org/10.1109/SRDS.
2009.35

[5] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable BFT
Consensus with Pipelined Tree-Based Dissemination and Aggregation. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP ’21). Association for Computing Machinery, New York, NY, USA, 35–48.
https://doi.org/10.1145/3477132.3483584

[6] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić.
2022. [Solution] Mir-BFT: Scalable and Robust BFT for Decentralized Networks.
Journal of Systems Research 2, 1 (2022). https://doi.org/10.5070/SR32159278

[7] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC ’19). Association for Computing Machinery, New York, NY, USA, 347–356.
https://doi.org/10.1145/3293611.3331591

https://github.com/relab/hotstuff
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/SRDS.2009.35
https://doi.org/10.1109/SRDS.2009.35
https://doi.org/10.1145/3477132.3483584
https://doi.org/10.5070/SR32159278
https://doi.org/10.1145/3293611.3331591

	1 Motivation
	2 Design
	3 Implementation & Evaluation
	References

